koko体育

贺文聪

时间:2023-09-01 点击数量:

                                               

贺文聪 博士,讲师

个人基本情况及学习工作经历:

2023.07-至今  重庆师范大学 物理与电子工程koko体育 讲师

2018.9-2023.6 重庆大学 物理koko体育  博士

2014.9-2018.6 重庆师范大学 物理与电子工程koko体育 学士

科研方向:

主要从事摩擦纳米发电机的高电荷密度、强耐久性、高效能量转转换效率以及自供能传感系统供能等方面的研究。

代表性论文:(按年份依次列出、中英文)

[1] Q. Zhao#, H. Wu#*, J. Wang, S. Xu, W. He, C. Shan, S. Fu, G. Li, K. Li & C. Hu*. HighEfficiency Charge Injection with Discharge Mitigation Strategy for Triboelectric Dielectric Materials. Advanced Energy Materials, 2023, 2302099.

[2] W. Zhang, W. He, S. Dai*, F. Ma, P. Lin*, J. Sun, L. Dong & C. Hu*. Wave energy harvesting based on multilayer beads integrated spherical TENG with switch triggered instant discharging for self-powered hydrogen generation. Nano Energy, 2023, 111, 108432.

[3] H. Wu, J. Wang, W. He, C. Shan, S. Fu, G. Li, Q. Zhao, W. Liu* & C. Hu*. Ultrahigh output charge density achieved by charge trapping failure of dielectric polymers. Energy & Environmental Science, 2023, 16, 2274-2283.

[4] J. Wang#, G. Li#, S. Xu, H. Wu, S. Fu, C. Shan, W. He, Q. Zhao, K. Li & C. Hu*. Remarkably Enhanced Charge Density of Inorganic Material Via Regulating Contact Barrier Difference and Charge Trapping for Triboelectric Nanogenerator. Advanced Functional Materials, 2023, 2304221.

[5] S. Tang#, W. Chang#, G. Li, J. Sun, Y. Du, X. Hui, Q. Tang, Z. Hu, J. Li, J. Chen*, W. He* & H. Guo*. High performance wide frequency band triboelectric nanogenerator based on multilayer wave superstructure for harvesting vibration energy. Nano Research, 2023, 16, 6933-6939.

[6] C. Shan#, W. He#, H. Wu, S. Fu, K. Li, A. Liu, Y. Du, J. Wang, Q. Mu, B. Liu, Y. Xi* & C. Hu*. Dual Mode TENG with SelfVoltage Multiplying Circuit for Blue Energy Harvesting and Water Wave Monitoring. Advanced Functional Materials, 2023, 2305768.

[7] Q. Li, S. Fu, X. Li, H. Chen, W. He, Q. Yang, X. Zhang, H. Yang, D. Ren & Y. Xi*. Overall performance improvement of direct-current triboelectric nanogenerators by charge leakage and ternary dielectric evaluation. Energy & Environmental Science, 2023, 16, 3514-3525.

[8] G. Li#, J. Wang#, S. Fu, C. Shan, H. Wu, S. An, Y. Du, W. He, Z. Wang, W. Liu, Y. Nie, S. Liu, P. Wang* & C. Hu*. A Nanogenerator Enabled by a Perfect Combination and Synergetic Utilization of Triboelectrification, Charge Excitation and Electromagnetic Induction to Reach Efficient Energy Conversion. Advanced Functional Materials, 2023, 33, 2213893.

[9] S. Fu#, H. Wu#, W. He, Q. Li, C. Shan, J. Wang, Y. Du, S. Du, Z. Huang* & C. Hu*. Conversion of Dielectric Surface Effect into Volume Effect for High Output Energy. Advanced Materials, 2023, e2302954.

[10] S. An#, S. Fu#, W. He, G. Li, P. Xing, Y. Du, J. Wang, S. Zhou, X. Pu* & C. Hu. Boosting Output Performance of Sliding Mode Triboelectric Nanogenerator by Shielding Layer and Shrouded-Tribo-Area Optimized Ternary Electrification Layered Architecture. Small, 2023, e2303277.

[11] X. Yu#, S. Fu#, X. Zuo, J. Zeng, C. Shan, W. He, W. Li* & C. Hu*. Moisture Resistant and Stable Wireless Wind Speed Sensing System Based on Triboelectric Nanogenerator with ChargeExcitation Strategy. Advanced Functional Materials, 2022, 32, 2207498.

[12] J. Wu#, W. Liu#, Q. Zeng#, Y. Zhang, H. Guo, X. Zhang, W. He, Y. Luo, X. Wang* & Z. L. Wang*. A Mutual Boosting Self-Excitation Hybrid Cell for Harvesting High Entropy Energy at 32% Efficiency. Small, 2022, 18, e2205704.

[13] H. Wu#, W. He#, C. Shan, Z. Wang, S. Fu, Q. Tang, H. Guo, Y. Du, W. Liu* & C. Hu*. Achieving Remarkable Charge Density via Self-Polarization of Polar High-k Material in a Charge-Excitation Triboelectric Nanogenerator. Advanced Materials, 2022, 34, e2109918.

[14] H. Wu#, S. Fu#, W. He, C. Shan, J. Wang, Y. Du, S. Du, B. Li* & C. Hu*. Improving and Quantifying Surface Charge Density via Charge Injection Enabled by Air Breakdown. Advanced Functional Materials, 2022, 32, 2203884.

[15] J. Wang#, H. Wu#, Z. Wang, W. He, C. Shan, S. Fu, Y. Du, H. Liu* & C. Hu*. An Ultrafast SelfPolarization Effect in Barium Titanate Filled Poly(Vinylidene Fluoride) Composite Film Enabled by SelfCharge Excitation Triboelectric Nanogenerator. Advanced Functional Materials, 2022, 32, 2204322.

[16] J. Wang, H. Wu, S. Fu, G. Li, C. Shan, W. He & C. Hu*. Enhancement of output charge density of TENG in high humidity by water molecules induced self-polarization effect on dielectric polymers. Nano Energy, 2022, 104, 107916.

[17] Q. Tang, Z. Wang, W. Chang, J. Sun, W. He, Q. Zeng, H. Guo* & C. Hu*. Interface Static Friction Enabled UltraDurable and High Output Sliding Mode Triboelectric Nanogenerator. Advanced Functional Materials, 2022, 32, 2202055.

[18] C. Shan#, W. He#, H. Wu, S. Fu, Q. Tang, Z. Wang, Y. Du, J. Wang, H. Guo* & C. Hu*. A High Performance Bidirectional Direct Current TENG by Triboelectrification of Two Dielectrics and Local Corona Discharge. Advanced Energy Materials, 2022, 12, 2200963.

[19] C. Shan#, W. He#*, H. Wu, S. Fu, G. Li, Y. Du, J. Wang, Q. Mu, H. Guo, B. Liu & C. Hu*. Efficiently utilizing shallow and deep trapped charges on polyester fiber cloth surface by double working mode design for high output and durability TENG. Nano Energy, 2022, 104, 107968.

[20] G. Li#, S. Fu#, C. Luo, P. Wang*, Y. Du, Y. Tang, Z. Wang, W. He, W. Liu, H. Guo, J. Chen* & C. Hu*. Constructing high output performance triboelectric nanogenerator via V-shape stack and self-charge excitation. Nano Energy, 2022, 96, 107068.

[21] W. He#, C. Shan#, H. Wu, S. Fu, Q. Li, G. Li, X. Zhang, Y. Du, J. Wang, X. Wang* & C. Hu*. Capturing Dissipation Charge in Charge Space Accumulation Area for Enhancing Output Performance of Sliding Triboelectric Nanogenerator. Advanced Energy Materials, 2022, 12, 2201454.

[22] W. He, C. Shan, S. Fu, H. Wu, J. Wang, Q. Mu, G. Li & C. Hu*. Large Harvested Energy by Self-Excited Liquid Suspension Triboelectric Nanogenerator with Optimized Charge Transportation Behavior. Advanced Materials, 2022, 35, 2209657.

[23] W. He, W. Liu, S. Fu, H. Wu, C. Shan, Z. Wang, Y. Xi, X. Wang, H. Guo*, H. Liu* & C. Hu*. Ultrahigh Performance Triboelectric Nanogenerator Enabled by Charge Transmission in Interfacial Lubrication and Potential Decentralization Design. Research (Wash D C), 2022, 2022, 9812865.

[24] S. Fu, W. He, H. Wu, C. Shan, Y. Du, G. Li, P. Wang, H. Guo, J. Chen* & C. Hu*. High Output Performance and Ultra-Durable DC Output for Triboelectric Nanogenerator Inspired by Primary Cell. Nano-micro Letters, 2022, 14, 155.

[25] S. Fu#, W. He#, Q. Tang, Z. Wang, W. Liu, Q. Li, C. Shan, L. Long, C. Hu* & H. Liu*. An Ultrarobust and High-Performance Rotational Hydrodynamic Triboelectric Nanogenerator Enabled by Automatic Mode Switching and Charge Excitation. Advanced Materials, 2022, 34, e2105882.

[26] Y. Du, S. Fu*, C. Shan, H. Wu, W. He, J. Wang, H. Guo, G. Li, Z. Wang & C. Hu*. A Novel Design Based on Mechanical TimeDelay Switch and Charge Space Accumulation for High Output Performance DirectCurrent Triboelectric Nanogenerator. Advanced Functional Materials, 2022, 32, 2208783.

[27] X. Zhang, J. Hu, Q. Zeng, H. Yang, W. He, Q. Li, X. Li, H. Yang*, C. Hu & Y. Xi*. A NonEncapsulated Polymorphous UShaped Triboelectric Nanogenerator for Multiform Hydropower Harvesting. Advanced Materials Technologies, 2021, 6, 2001199.

[28] Z. Wang, Q. Tang, C. Shan, Y. Du, W. He, S. Fu, G. Li, A. Liu, W. Liu* & C. Hu*. Giant performance improvement of triboelectric nanogenerator systems achieved by matched inductor design. Energy & Environmental Science, 2021, 14, 6627-6637.

[29] Z. Wang#, W. Liu#*, W. He, H. Guo, L. Long, Y. Xi, X. Wang, A. Liu* & C. Hu*. Ultrahigh Electricity Generation from Low-Frequency Mechanical Energy by Efficient Energy Management. Joule, 2021, 5, 441-455.

[30] C. Shan#, W. Liu#*, Z. Wang, X. Pu, W. He, Q. Tang, S. Fu, G. Li, L. Long, H. Guo, J. Sun, A. Liu* & C. Hu*. An inverting TENG to realize the AC mode based on the coupling of triboelectrification and air-breakdown. Energy & Environmental Science, 2021, 14, 5395-5405.

[31] K. Qin, C. Chen, X. Pu*, Q. Tang*, W. He, Y. Liu, Q. Zeng, G. Liu, H. Guo & C. Hu*. Magnetic Array Assisted Triboelectric Nanogenerator Sensor for Real-Time Gesture Interaction. Nano-micro Letters, 2021, 13, 51.

[32] L. Long#, W. Liu#*, Z. Wang, W. He, G. Li, Q. Tang, H. Guo, X. Pu, Y. Liu & C. Hu*. High performance floating self-excited sliding triboelectric nanogenerator for micro mechanical energy harvesting. Nature Communications, 2021, 12, 4689.

[33] Q. Li#, W. Liu#, H. Yang, W. He, L. Long, M. Wu, X. Zhang, Y. Xi*, C. Hu* & Z. L. Wang*. Ultra-stability high-voltage triboelectric nanogenerator designed by ternary dielectric triboelectrification with partial soft-contact and non-contact mode. Nano Energy, 2021, 90, 106585.

[34] G. Li#, G. Liu#, W. He, L. Long, B. Li, Z. Wang, Q. Tang, W. Liu* & C. Hu*. Miura folding based charge-excitation triboelectric nanogenerator for portable power supply. Nano Research, 2021, 14, 4204-4210.

[35] Y. Du#, Q. Tang#, W. He, W. Liu, Z. Wang, H. Wu, G. Li, H. Guo, Z. Li, Y. Peng* & C. Hu*. Harvesting ambient mechanical energy by multiple mode triboelectric nanogenerator with charge excitation for self-powered freight train monitoring. Nano Energy, 2021, 90, 106543.

[36] Z. Wang#, W. Liu#, J. Hu, W. He, H. Yang, C. Ling, Y. Xi, X. Wang, A. Liu* & C. Hu*. Two voltages in contact-separation triboelectric nanogenerator: From asymmetry to symmetry for maximum output. Nano Energy, 2020, 69, 104452.

[37] Y. Liu#, W. Liu#*, Z. Wang, W. He, Q. Tang, Y. Xi, X. Wang, H. Guo* & C. Hu*. Quantifying contact status and the air-breakdown model of charge-excitation triboelectric nanogenerators to maximize charge density. Nature Communications, 2020, 11, 1599.

[38] W. Liu#, Z. Wang#, G. Wang, Q. Zeng, W. He, L. Liu, X. Wang, Y. Xi, H. Guo*, C. Hu* & Z. L. Wang*. Switched-capacitor-convertors based on fractal design for output power management of triboelectric nanogenerator. Nature Communications, 2020, 11, 1883.

[39] W. He#, W. Liu#, J. Chen, Z. Wang, Y. Liu, X. Pu, H. Yang, Q. Tang, H. Yang, H. Guo* & C. Hu*. Boosting output performance of sliding mode triboelectric nanogenerator by charge space-accumulation effect. Nature Communications, 2020, 11, 4277.

[40] H. Yang, M. Deng, Q. Tang, W. He, C. Hu, Y. Xi*, R. Liu* & Z. L. Wang*. A Nonencapsulative PendulumLike PaperBased Hybrid Nanogenerator for Energy Harvesting. Advanced Energy Materials, 2019, 9, 1901149.

专利:

[1] 胡陈果,贺文聪,刘文林,郭恒宇.一种基于空间电荷积累的摩擦发电机[M], 2020:CN111585466A; CN2020111585466A

[2] 程云涛,付绍珂,胡陈果,孙宽,贺文聪.基于模式自动切换和电荷激励的旋转摩擦纳米发电机[M], 2021:CN113659865A; CN2021113659865A

教师赠语:

课题组长期招纳研究生与本科生,欢迎有科研志向的同学加入。

邮箱或个人网站:

邮箱:hewc@cqnu.edu.cn

 

koko体育丨集团有限公司